

Binder Expert Task Group Oklahoma City, Oklahoma

September 15th, 2015

Pavement Materials Team, TFHRC

Last ETG Presented...

- X-ray Fluorescence
- Case study of real field aging to justify 2XPAV
- Binder
 - Blending and softening efficiency
 - m&S ∆T_{CRITICAL}
 - Extended BBR
 - Linear Amplitude Sweep
 - Double Edge Notch Tension
 - ABCD
- Short-term and long-term oven aged mixtures
 - Hamburg & TSR
 - E*
 - AMPT Cyclic Fatigue
 - TSRST

1	Base	е	+REOB Source 3		
	PAV	2X PAV	PAV	2X PAV	
	-2.0°C ∆T _{critical}	-1.1°C $\Delta T_{critical}$	-5.7°C $\Delta T_{critical}$	-10°C ∆T _{critical}	
	PG60-30	PGxx-29	PG58-33	PGxx-26	
	0% PG100-0 +	0% REOB	20% PG100-0	0 + 15% REOB	
			-5.1°C $\Delta T_{critical}$	-10°C $\Delta T_{critical}$	
			PG51-40	PGxx-34	
PG 58-28			0% PG100-0) + 15% REOB	
G 5			-0.8°C ΔT _{critical}	2X PAV Not tested	
Д			PG69-24	ZA PAV Not tested	
			20% PG100-0	0 + 0% REOB	
			-0.2°C ΔT _{critical}	-2.8°C ΔT _{critical}	
			PG59-33	PGxx-29	
			0% PG100-0	+ 2.5% REOB	
2	+0.8°C $\Delta T_{critical}$	-1.9°C $\Delta T_{critical}$	-2.2°C $\Delta T_{critical}$		
PG64-22	PG67-27	PGxx-23	PG61-28	PGxx-23	
	0% PG100-0 +	0% REOB	0% PG100-0	+ 6% REOB	

xx – indicates the high temperature grade of the 2X PAV material was not tested

BBR ∆T_{critical} Spread: PG_{(S)tiffness} – PG_{(m)-creep,} 1XPAV

Findings (1 of 5)

- 1. You can readily detect REOB presence
- 2. You can tell that it is there; but you cannot tell exactly how much is there.
 - Round Robin XRF results may shed more light on this.
- 3. Effect of REOB depends on base binder (like PPA)
- 4. Variation between REOB suppliers & their samples
 - Same concentration can produce different PG grades

Findings (2 of 5)

- 5. 2 X PAV is a reasonable approximation of 5 years where anecdotal concerns lie (ALF Data)
- 6. REOB softens and reduces tensile strength
 - Binder notched tension (DENT)
 - Decreases mix wet and dry IDT strength
 - Also seen in TSRST
- 7. In 2 of 3 cases, REOB improved <u>binder</u> intermediate temperature parameters for fatigue / strain tolerance
 - 6% and 2.5% REOB blends
 - CTOD and LAST

- 8. Rheological "disruption" occurred w/ highest %REOB
 - Differences in Low Temperature m&S
 - Did Not occur in blend with PG100-0 by itself
 - Did occur in blends with high-REOB + PG100-0
 - Made worse by extended aging
 - Alludes to performance deterioration
 - Corroborated by DENT CTOD & LAST & Stripping
 - Forces the issue of compatibility (extenders, rejuvenators, RAP / RAS, WMA...)

9. REOB effects on Moisture Sensitivity

- TSR ratio, strength and Hamburg performance decreases with increasing REOB when no anti-strip is added
- REOB did not interfere with liquid anti-strip which improved TSR and Hamburg performance
- Liquid anti-strip (0.4%) alters IDT strength and Hamburg deterioration more than REOB (2.5%-15%)

10.Conclusions

- Low concentrations of REOB did not appear to adversely affect binder and mixture properties
- High concentration of REOB consistent with loss of strength in different binder and mix test methods

11. Recommendations

- Further examination of m & S as "flag" is warranted.
- Minimum value for S should be reexamined

New Updates

New Updates

Focus on m & S

- Standard test methodology
- What is the ability of ∆Tc to discriminate binders with different levels of REOB?

 Conduct rheological tests on XRF samples sent in by the State DOTs

FHWA has tested 2,600 XRF samples

Select ~3% of the data set for further study...

Individual Binders Selected for Testing

Individual Binders Selected for Testing

of Binders and their Grades Selected Data Set

	52	58	64	70	76
-16			1		
-22		2	19	2	2
-28		8	15	4	4
-34	2	2	2	1	

AC 0.6	AC 3	AC 5	AC 10	AC 15	AC 20
3	1	2	2	2	1

of Binders and their Grades 0-3%

	52	58	64	70	76
-16			1		
-22		1	8	1	2
-28		1	2		
-34	1	1	1	1	

AC 0.6	AC 3	AC 5	AC 10	AC 15	AC 20

of Binders and their Grades 4-6%

	52	58	64	70	76
-16					
-22			4	1	
-28			3	1	2
-34	1	1	1		

AC 0.6	AC 3	AC 5	AC 10	AC 15	AC 20

of Binders and their Grades 7-9%

	52	58	64	70	76
-16					
-22		1	3		
-28		3	7	2	2
-34					

AC 0.6	AC 3	AC 5	AC 10	AC 15	AC 20
			2	1	1

of Binders and their Grades 10-12%

	52	58	64	70	76
-16					
-22			4		
-28		1	3	3	
-34					

AC 0.6	AC 3	AC 5	AC 10	AC 15	AC 20
				1	

	52	58	64	70	76
-16					
-22					
-28		3			
-34					

AC 0.6	AC 3	AC 5	AC 10	AC 15	AC 20
3	1	2			

Work Plan

- Verify Effect of Additives on High, Intermediate and Low PG Grades
- BBR m & S continuous grade
 - Standard 20 hr. PAV
 - 2x PAV if sufficient binder quantity was provided
- Mix Testing??? Insufficient binder quantities ⊗
- Separate evaluations for binders which contain:
 - Ground Tire Rubber
 - Hydrolene
 - Used motor oil (unrefined)
 - Vegetable oil
 - etc.

Questions?

Suggestions?